
Page 1 of 28 

 

How to identify MQ client connections and stop them 
 

IBM Techdoc: 7045669 
 

http://www.ibm.com/support/docview.wss?uid=swg27045669 

 
Date last updated: 30-Oct-2019 

 
Angel Rivera – rivera@us.ibm.com 

 IBM MQ Support 
 
 
+++ Objective 
 
MQ client applications can connect to a queue manager through a transport type of "client", 
instead of "bindings". MQ runmqsc, MQ Explorer and SupportPac MS6B (chstat script) can be 
set to identify connections of this type, and stop them. To learn how to configure these 
options, use the information in this document. 
 
The processes described here have been tested with the following configurations: 
1: An MQ JMS client, used by WebSphere Application Server, with the automatic client 
reconnect option enabled. 
2: The amqsputc sample MQ application, with the automatic client reconnect option 
disabled.  
3: The amqsphac high availability put sample MQ application, with the automatic client 
reconnect option enabled. 
4: MQ Explorer, with the automatic client reconnect option disabled. 
 
If you already have some knowledge and experience in this area, here is a set of example 
commands for using runmqsc to identify MQ client connections and stop them: 
 
- To display all the connections (both bindings and client), use: 
display qmstatus conns 
 
- To display the client applications using a server-connection channel: 
display conn(*) where(channel NE '') APPLTAG CHANNEL CONNAME CONNOPTS 
 
- To stop a connection (using the desired connection number from "display conn(*)"): 
stop conn(connectionNumberfromDisplayConn) 
 
- To stop a server-connection channel and allow it to be restarted by new connections: 
stop channel(channelName) status(INACTIVE) 
 
- To stop a server-connection channel and force it to remain stopped: 
stop channel(channelName) status(STOPPED) 

http://www.ibm.com/support/docview.wss?uid=swg27045669


Page 2 of 28 

 

++ Displaying MaxChannels at runtime, from an FDC, such as one generated by amqrmppa 
(Updated on 06-Sep-2019) 
 
http://www.ibm.com/support/docview.wss?uid=ibm10872924 
How to find out the value of MaxChannels that the queue manager is actually using at 
runtime (from an FDC) 
 
Search for the section: 
   Channel Status Table Header 
See the value for MaxChannels that the queue manager is actually using (in this test is 100): 
Channel Status Table Header 
{ 
  Version                  4 
  HeaderSize               456 
  ChanSeqNo                123 
  AllocatedCount           1 
  MaxChannels              100     <==*** This is the entry that shows the MaxChannels *** 
  MaxActiveChannels        100 
 
 

http://www.ibm.com/support/docview.wss?uid=ibm10872924


Page 3 of 28 

 

++ Displaying how many channels are in use (Updated on 14-Dec-2018) 
 
The following excerpt is from: 
http://www-01.ibm.com/support/docview.wss?uid=swg21449463 
Finding the number of running channels 
 
To display all the channels, use: 
 
Windows: you can enter the following compound commands. 
Ensure to replace QMGR with the proper values for your system: 
 
echo DISPLAY CHSTATUS(*) | runmqsc QMGR | find /c "AMQ8417" 
 
UNIX: you can enter the following compound commands. 
Ensure to replace QMGR with the proper values for your system: 
 
echo "DISPLAY CHSTATUS(*)" | runmqsc QMGR | grep 'AMQ8417' | wc -l 
 
For UNIX: One possible way to apply this information is to create a cron job that issues the 
mentioned command and if the number of running channels is getting closer to the 
MaxChannels, then an MQ Administrator might be notified. The following technote could be 
used as a reference for creating a cron job: 

http://www-01.ibm.com/support/docview.wss?uid=swg21249309 
    cron job for clearing all messages from a queue 

 
On Distributed platforms the default value for MaxChannels is 100. 
 
A system that is busy serving connections from the network might need a higher number 
than the default setting. Determine the value that is correct for your environment, ideally 
by observing the behavior of your system during testing. 
 
On Distributed platforms, MaxChannels is an attribute in the qm.ini file. 
The value for MaxChannels must be in the range 1 through 65535, with a default value of 
100. 
 
Example on how to change the maximum channels for a queue manager from the default 
100 to 300: 
 
Step 1: Modify the qm.ini of the queue manager: 
CHANNELS: 
   MaxChannels=300 
 
Step 2: Stop and restart the queue manager for the change in the qm.ini to take effect. 
 
 

http://www-01.ibm.com/support/docview.wss?uid=swg21449463
http://www-01.ibm.com/support/docview.wss?uid=swg21249309


Page 4 of 28 

 

++ Identify the application that has opened a queue and is still using it 
 
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg21318303 
Identify the application that is connected to a queue 
 
The following example is for queue “Q1”. The APPLTAG and CONNAME provide the name of 
the application and the IP address. 
 
display conn(*) where(objname eq Q1) all 
 
Example output: 
AMQ8276: Display Connection details. 
   CONN(ACBDC64820001B01) 
   EXTCONN(414D5143514D5F414E47454C494C4C4F) 
   TYPE(CONN) 
   PID(7364)                               TID(1) 
   APPLTAG(WebSphere MQ\bin\amqsputc.exe)   APPLTYPE(USER) 
   ASTATE(NONE)                            CHANNEL( ) 
   CONNAME(9.46.76.236)                    CONNOPTS(MQCNO_SHARED_BINDING) 
   USERID(x)                               UOWLOG( ) 
   UOWSTDA( )                              UOWSTTI( ) 
   UOWLOGDA( )                             UOWLOGTI( ) 
   URTYPE(QMGR) 
   EXTURID(XA_FORMATID[00000000] XA_GTRID[] XA_BQUAL[]) 
   QMURID(0.0)                             UOWSTATE(NONE) 
 
The following fields are of interest: 
PID(7364) => Process id 
APPLTAG(WebSphere MQ\bin\amqsputc.exe) => name of the application 
USERID(x) => Userid that has invoked the application 
CONNAME(9.46.76.236) => IP address (aka, connection name) 
 
 
 
 
 

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg21318303


Page 5 of 28 

 

++ Best practice of creating a dedicated server-connection channel for applications 
 
The default server-connection channel SYSTEM.DEF.SVRCONN is one that is intended to be 
used for sporadic connections, such as a testing of samples or for activities that are 
intermittent or of short duration. 
 
But if a client application is going to be connected constantly to the queue manager, then it 
is best to create and use a dedicated server-connection channel for that application. 
There are some benefits for doing so: 
 
- If the channel needs to be stopped, then only the dedicated application will be affected. 
 
- You can exploit a customized "channel authentication record", which is a feature 
introduced in MQ 7.1. 
 
- You could have different characteristics for the channel, such as SSL, MAXMSGL (maximum 
message length), MAXINST (maximum instances) and MAXINSTC (maximum instances per 
client). 
 
 
+ The chapters are: 
 
Chapter 1: Identifying the clients that are connected through channels from the MQ 
Explorer 
 
Chapter 2: Identifying the clients that are connected through channels from runmqsc: 
DISPLAY CONN(*) where(channel NE '')  
 
Chapter 3: Identifying the clients that are connected through channels, using 'chstat' from 
SupportPac MS6B 
 
Chapter 4: Stopping a connection through MQ Explorer 
 
Chapter 5: Stopping a connection through runmqsc: STOP CONN 
+ Scenario 1: Stopping a connection from a client that is not using automatic client 
reconnect. 
+ Scenario 2: Trying to stop a connection from a client that is using automatic client 
reconnect. 
 
Chapter 6: Stopping a connection through runmqsc: STOP CHANNEL STATUS(STOPPED) 
+ Scenario 1: Stopping a channel and specifying STATUS(INACTIVE) 
+ Scenario 2: Stopping a channel and specifying STATUS(STOPPED) 
 



Page 6 of 28 

 

++ Configuration and topology 
 
Even though the functions to identify and to stop the connections has not changed thru the 
versions, for completeness, this techdoc uses a variety of MQ versions and fix packs and 
multiple operating systems: 7.0.1, 7.1.0.6, 7.5.0.4, 8.0.0.2, Windows, Linux x86. 
 
Queue manager in Linux: 
  Name: QM_75 
  Host: veracruz.raleigh.ibm.com  (IP 9.27.46.236) port 1430 
  Version: 7.5.0.4 
 
Client type 1: 
MQ client in Linux x86-32 (MQ JMS 7.0.1.7 from WAS): 
  Host: veracruz.raleigh.ibm.com (9.27.46.236) 
  WAS 7.0.0.23 running with MQ JMS 7.0.1.7 
  Server-connection channel:  SYSTEM.DEF.SVRCONN 
  Reconnection note: The MQ JMS client connection from WAS specifies the reconnection 
option. 
 
Client type 2: 
MQ client in Windows 64-bit (sample amqsputc) 
  Host: angelillo.raleigh.ibm.com [9.27.46.181] 
  Version:  7.1.0.6 
  Server-connection channel:  SYSTEM.DEF.SVRCONN 
  Commands: 
    set MQSERVER=SYSTEM.DEF.SVRCONN/TCP/veracruz.raleigh.ibm.com(1430) 
    amqsputc Q1 QM_75 
  Reconnection note: The amqsphac sample, written in C, does not specify the option for 
automatic client reconnection. 
 
Client type 3: 
MQ client in Linux x86-64 (high availability put sample amqsphac): 
  Host: mosquito.raleigh.ibm.com (9.27.47.38) 
  Version: 8.0.0.2 
  Server-connection channel:  TEST.SVRCONN 
  Commands: 
    export MQSERVER='TEST.SVRCONN/TCP/veracruz.raleigh.ibm.com(1430)' 
    amqsphac Q1 QM_75 
  Reconnection note: The amqsphac sample, written in C, specifies the following option for 
the connection handle: 
      cno.Options = MQCNO_RECONNECT;  /* reconnectable connection       */ 
 
Client type 4: 
MQ Explorer in Windows 7: 
  Host: angelillo.raleigh.ibm.com [9.27.46.181] 
  Version:  8.0.0.2 



Page 7 of 28 

 

  Server-connection channel:  SYSTEM.ADMIN.SVRCONN 
  Reconnection note: When the MQ Explorer connects to a remote queue manager, does not 
use the reconnection option. 
   
 
 



Page 8 of 28 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ Chapter 1: Identifying the clients that are connected through channels from the MQ 
Explorer 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
Start the MQ Explorer.  
From the left panel, select the desired queue manager and right click to show the context 
menu. 
Select "Application Connections...". 
 
The following screen capture is for the queue manager QM_75: 
 
 

 
 
 



Page 9 of 28 

 

You will see a new window that has 2 panels. 
The top panel shows all the connections. 

 
 
Notice that there is a total of 25 connections (which includes both bindings and client 
connections). 
 
Note about runmqsc to show the number of total connections: 
This total can be found via runmqsc as follows: 
To display all the connections (both bindings and client), use: 
  display qmstatus conns 
AMQ8705: Display Queue Manager Status Details. 
   QMNAME(QM_75)                           STATUS(RUNNING) 
   CONNS(25) 
 



Page 10 of 28 

 

Because we need to take a look at the column "Channel name" (which is the 8th column 
from the left) and at the column "Conn name" (IP Address, which is the 9th column), it is 
recommended that you maximize the window and you click twice on the column title for 
"Channel name" in order to sort the values and to show the entries that have a channel 
name at the top. 

 
 
 
Because the contents of the above screen capture is a bit hard to read, the plain text for 
the combined 1st column (App name), 8th column (Channel name) and 9th column (Conn 
name) is shown below.  
A new column called "Index" is added for the convenience of being able to talk later about 
each entry, and referring to the index will facilitate the discussion. 
Also, underneath each entry the Connection Options (column number 7) will be included: 
 
Index  App name                       Channel name          Conn name 

 

1      WebSphere MQ client for Java   SYSTEM.DEF.SVRCONN    9.27.46.236 

       Connection Options: Shared, Share block, Reconnect 

 

2      Sphere MQ_1\bin\amqsputc.exe   SYSTEM.DEF.SVRCONN    9.27.46.181 

       Connection Options: Shared, Share block 

 

3      amqsphac                       TEST.SVRCONN          9.27.47.38 

       Connection Options: Shared, Share block, Reconnect 

 

4      MQ Explorer 8.0.0              SYSTEM.ADMIN.SVRCONN  9.27.46.181 

       Connection Options: Shared, Share block 

 

 
The following has more explanation for each entry: 
 
1: This connection is from the MQ Client from WAS, which is using the MQ classes for JMS 
(7.0.1.7), running in host "veracruz.raleigh.ibm.com" with IP address 9.27.46.236. It is a 
host with Linux x86-32. 
The MQ client for Java is using the reconnect option. 
The channel is SYSTEM.DEF.SVRCONN 
 
2: It is from the MQ Client (at 7.1.0.6) from Windows sample "amqsputc.exe", which is 
running in host "angelillo.raleigh.ibm.com" with IP 9.27.46.181. It is a host with Windows 7. 
 It is not using the reconnect option. 



Page 11 of 28 

 

The channel is SYSTEM.DEF.SVRCONN 
 
 
3: It is from the MQ Client (at 8.0.0.2) high availability sample "amqsphac", which is running 
in host "mosquito.raleigh.ibm.com" with IP 9.27.47.38. It is a host with Linux x86-64: 
It is using the reconnect option. 
The channel is TEST.SVRCONN 
 
4: It is from the MQ Explorer (at 8.0.0.2), which is running in host 
"angelillo.raleigh.ibm.com" with IP 9.27.46.181. It is a host with Windows 7. 
It is not using the reconnect option. 
The channel is SYSTEM.ADMIN.SVRCONN 
 
 



Page 12 of 28 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ Chapter 2: Identifying the clients that are connected through channels from runmqsc: 
DISPLAY CONN(*) where(channel NE '')  
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
You can use runmqsc to list all the connections that are connected through a channel. 
 
The following general command will be used: 
  display conn(*) 
 
This general command will show both the clients that are connected through bindings 
(local) and through client mode (network, using a server-connection channel). 
 
However, to narrow down the list of connections that are connected through a channel, 
then we will use the filter 'where' and specify those entries that have a value in the 
attribute 'channel name'; that is, where the channel name is not null. 
If the value for the attribute 'channel name' is null, then it means that it is a connection 
using bindings mode and we are not interested on them in this techdoc. 
 
This type of 'where clause' is a bit tricky because the filter in runmqsc does not have the 
SQL equivalent of "where attribute is not null" and thus you have to use the following 
WHERE expression: 
   ChannelName Not Equals to singleQuote singleQuote 
Which translates into: 
  where(channel NE '') 

   
Note:  
For completeness, the equivalent for "where attribute is null" is: 
  where(channel EQ '') 

 
Let's run the desired display conn(*) command with the filter, showing only certain 
attributes, in order to get a short output. 
 
$ runmqsc QM_75 
 
display conn(*) where(channel NE '') APPLTAG CHANNEL CONNAME CONNOPTS 
 
# Note that for readability in this document, I am introducing a separating line between 
entries. 
 
AMQ8276: Display Connection details. 
   CONN(B097365514220020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(CONN) 
   APPLTAG(WebSphere MQ Client for Java)   CHANNEL(SYSTEM.DEF.SVRCONN) 
   CONNAME(9.27.46.236) 



Page 13 of 28 

 

 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING,MQCNO_RECONNECT) 
. 
 
AMQ8276: Display Connection details. 
   CONN(B097365501810020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(CONN) 
   APPLTAG(Sphere MQ_1\bin\amqsputc.exe)   CHANNEL(SYSTEM.DEF.SVRCONN) 
   CONNAME(9.27.46.181) 
   CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING) 
. 
AMQ8276: Display Connection details. 
   CONN(B097365503800020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(CONN) 
   APPLTAG(amqsphac)                       CHANNEL(TEST.SVRCONN) 
   CONNAME(9.27.47.38) 
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING,MQCNO_RECONNECT) 
. 
AMQ8276: Display Connection details. 
   CONN(B0973655027F0020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(CONN) 
   APPLTAG(MQ Explorer 8.0.0)              CHANNEL(SYSTEM.ADMIN.SVRCONN) 
   CONNAME(9.27.46.181) 
   CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING) 
 
 
# For comparison with the shorter output, let's show all the attributes for only one of the 
above connections, in that way, you can see most of the attributes. 
 
display  CONN(B097365501810020) 
AMQ8276: Display Connection details. 
   CONN(B097365501810020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(CONN) 
   PID(20741)                              TID(35) 
   APPLDESC(WebSphere MQ Channel) 
   APPLTAG(Sphere MQ_1\bin\amqsputc.exe) 
   APPLTYPE(SYSTEM)                        ASTATE(NONE) 
   CHANNEL(SYSTEM.DEF.SVRCONN)             CONNAME(9.27.46.181) 
   CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING) 
   USERID(rivera)                          UOWLOG( ) 
   UOWSTDA( )                              UOWSTTI( ) 
   UOWLOGDA( )                             UOWLOGTI( ) 
   URTYPE(QMGR) 



Page 14 of 28 

 

   EXTURID(XA_FORMATID[] XA_GTRID[] XA_BQUAL[]) 
   QMURID(0.0)                             UOWSTATE(NONE) 
 
 



Page 15 of 28 

 

# To show even more data, such as which is the queue to which the application is 
connected, you can add: type(all) 
In this example, the application is using the queue Q1: 
   OBJNAME(Q1)                             OBJTYPE(QUEUE) 
 
display CONN(B097365501810020) type(all) 
     4 : display CONN(B097365501810020) type(all) 
AMQ8276: Display Connection details. 
   CONN(B097365501810020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(*) 
   PID(20741)                              TID(35) 
   APPLDESC(WebSphere MQ Channel) 
   APPLTAG(Sphere MQ_1\bin\amqsputc.exe) 
   APPLTYPE(SYSTEM)                        ASTATE(NONE) 
   CHANNEL(SYSTEM.DEF.SVRCONN)             CONNAME(9.27.46.181) 
   CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING) 
   USERID(rivera)                          UOWLOG( ) 
   UOWSTDA( )                              UOWSTTI( ) 
   UOWLOGDA( )                             UOWLOGTI( ) 
   URTYPE(QMGR) 
   EXTURID(XA_FORMATID[] XA_GTRID[] XA_BQUAL[]) 
   QMURID(0.0)                             UOWSTATE(NONE) 
 
   OBJNAME(Q1)                             OBJTYPE(QUEUE) 
   ASTATE(NONE)                            HSTATE(INACTIVE) 
   OPENOPTS(MQOO_OUTPUT,MQOO_FAIL_IF_QUIESCING) 
   READA(NO) 
 
 
NOTES: 
. 
The following attributes from the output of DISPLAY CONN are not about the channel itself, 
but about the client application: 
   APPLDESC( )            
   APPLTAG(WebSphere MQ Client for Java)                    
. 
The information of the APPLTAG field in 7.5 and later, it is more descriptive (whenever 
possible), than in 7.0 or 7.1. 
For example, when an MQ Explorer Version 7.5 or 8.0 connects to the queue manager, the 
DISPLAY CONN will show respectively: 
  APPLTAG(MQ Explorer 7.5.0) 
  APPLTAG(MQ Explorer 8.0.0) 
. 
But when an MQ Explorer Version 7.0 or 7.1 connects, then the APPLTAG will be the generic: 
   APPLTAG(WebSphere MQ Client for Java) 



Page 16 of 28 

 

 
 



Page 17 of 28 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ Chapter 3: Identifying the clients that are connected through channels, using 'chstat' 
from SupportPac MS6B 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
Another way to identify the client connections is to use the following SupportPac which 
provides a korn shell script (called 'chstat') to list and/or kill all connections to a queue 
manager by queue, channel, or IP address.  
 
The script can be downloaded from: 
 
http://www-01.ibm.com/support/docview.wss?acss=wmq032008&rs=171&uid=swg24017810 
MS6B: WebSphere MQ Connection Management Utility  
 
For this technical document, the script was downloaded in to the following directory of the 
Linux host that has the queue manager QM_75: 
    /downloads/mq/ms6b 
 
Usage note: You can use the "-example" option to have the syntax for performing most of 
the functions provided by the script: 
   chstat -example 
 
The following command shows the connected applications: 
 
$ chstat -mQM_75 -channel 
 
Total Connections       Channel Name                    Connections By IP       Application Tag 
21                      BINDINGS_CONN 
                                                         7   LOCALHOST          amqfcxba 
                                                         3   LOCALHOST          amqfqpub 
                                                         1   LOCALHOST          amqpcsea 
                                                         1   LOCALHOST          amqrrmfa 
                                                         1   LOCALHOST          amqzdmaa 
                                                         1   LOCALHOST          amqzfuma 
                                                         5   LOCALHOST          amqzmuf0 
                                                         1   LOCALHOST          runmqchi 
                                                         1   LOCALHOST          runmqsc 
1                       SYSTEM.ADMIN.SVRCONN 
                                                         1   9.27.46.181        MQExplorer8.0.0 
2                       SYSTEM.DEF.SVRCONN 
                                                         1   9.27.46.181        SphereMQ_1/bin/amqsputc.exe 
                                                         1   9.27.46.236        WebSphereMQClientforJava 
1                       TEST.SVRCONN 
                                                         1   9.27.47.38 amqsphac 
 
Total Active Channels: 4 



Page 18 of 28 

 

Total Active Connections: 25 
Total Unique Clients: 4 



Page 19 of 28 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ Chapter 4: Stopping a connection through MQ Explorer 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
Let's terminate the connection from the amqsputc.exe in Windows, which currently looks 
like this: 
 
C:\> amqsputc Q1 QM_75 
Sample AMQSPUT0 start 
target queue is Q1 
message-1 
 
Notice that one message has been placed in the queue Q1: "message-1" 
 
From MQ Explorer, select the connection for amqsputc.exe and then click on the button 
"Close Connection" 

 
 
 
 



Page 20 of 28 

 

You will get a dialog to confirm the stopping of the connection: 

 
 
Click Yes. 
 
The connection is no longer active and it will not appear anymore in this window from the 
MQ Explorer. 
 
When looking at the command prompt where the sample is running, it seems that nothing 
happened: 
 
C:\>amqsputc Q1 QM_75 
Sample AMQSPUT0 start 
target queue is Q1 
message-1 
 
However, if you try to enter another message and press enter at the amqsputc.exe prompt, 
then you will get the rc 2009 indicating a broken. 
 
C:\Users\IBM_ADMIN> amqsputc Q1 QM_75 
Sample AMQSPUT0 start 
target queue is Q1 
message-1 
message-2 
MQCLOSE ended with reason code 2009 
Sample AMQSPUT0 end 
 
C:\Users\IBM_ADMIN>mqrc 2009 
      2009  0x000007d9  MQRC_CONNECTION_BROKEN 
 
Look now at the bottom of the error log for the queue manager, and you will see an error 
entry that corresponds to the stopping of the connection: 
 
04/23/2015 04:38:14 PM - Process(20741.5) User(rivera) Program(amqrmppa) 
                    Host(veracruz) Installation(Installation2) 
                    VRMF(7.5.0.4) QMgr(QM_75) 
AMQ9546: Error return code received. 



Page 21 of 28 

 

EXPLANATION: 
The program has ended because return code 8409612 was returned from function 
 
----- amqrcmsa.c : 4928 ------------------------------------------------------- 
04/23/2015 04:38:14 PM - Process(20741.5) User(rivera) Program(amqrmppa) 
                    Host(veracruz) Installation(Installation2) 
                    VRMF(7.5.0.4) QMgr(QM_75) 
AMQ9999: Channel 'SYSTEM.DEF.SVRCONN' to host '9.27.46.181' ended abnormally. 
EXPLANATION: 
The channel program running under process ID 20741 for channel 
'SYSTEM.DEF.SVRCONN' ended abnormally. The host name is '9.27.46.181'; in some 
cases the host name cannot be determined and so is shown as '????'. 
 
 
 



Page 22 of 28 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ Chapter 5: Stopping a connection through runmqsc: STOP CONN 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
+ Scenario 1: Stopping a connection from a client that is not using automatic client 
reconnect. 
 
From Chapter 2, the output from runmqsc for DISPLAY CONN(*) that shows the entry for 
amqsputc (which does not use automatic client reconnect) is the following: 
 
AMQ8276: Display Connection details. 
   CONN(B097365501810020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(CONN) 
   APPLTAG(Sphere MQ_1\bin\amqsputc.exe)   CHANNEL(SYSTEM.DEF.SVRCONN) 
   CONNAME(9.27.46.181) 
   CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING) 
 
To stop that connection, issue the following runmqsc, by copying the connection value from 
the above output: 
 
  STOP CONN(B097365501810020) 
AMQ8457: WebSphere MQ connection stopped. 
 
If you issue again the DISPLAY CONN(*) command, you will see that the number of 
connections was decreased from 4 to 3, because the connection from amqsputc is no longer 
there. 
 
You can wait around a minute and issue the DISPLAY CONN(*) again. You will notice that the 
count remains the same and that there is no entry for amqsputc. 
 
This means that the sample amqsputc has not tried to reconnect, and effectively, its 
connection was terminated. Good! 
 
 



Page 23 of 28 

 

+ Scenario 2: Trying to stop a connection from a client that is using automatic client 
reconnect. 
 
From Chapter 2, the output from runmqsc for DISPLAY CONN(*) that shows the entry for 
amqsphac (which uses automatic client reconnect) is the following: 
 
AMQ8276: Display Connection details. 
   CONN(B097365503800020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(CONN) 
   APPLTAG(amqsphac)                       CHANNEL(TEST.SVRCONN) 
   CONNAME(9.27.47.38) 
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING,MQCNO_RECONNECT) 
 
Currently the amqsphac application is happily putting messages into the queue: 
 
message <Message 974> 
message <Message 975> 
 
Now let's try to stop the connection using the method in the Scenario 1: 
 
STOP CONN(B097365503800020) 
     8 : STOP CONN(B097365503800020) 
AMQ8457: WebSphere MQ connection stopped. 
 
And if you quickly issue the DISPLAY CONN(*) again, you will notice that the output will not 
show the entry for the connection CONN(B097365503800020) and you may think that the 
connection from amqsphac has terminated. 
 
But if you look again at the amqsphac application you will see that because the application 
is using automatic client reconnection, the MQ libraries detected the broken connection 
and they tried to reconnect, and were able to successfully reconnect! 
 
message <Message 1096> 
message <Message 1097> 
14:39:27 : EVENT : Connection Reconnecting (Delay: 192ms) 
14:39:27 : EVENT : Connection Broken 
14:39:28 : EVENT : Connection Reconnected 
message <Message 1098> 
message <Message 1099> 
 
If you issue again the DISPLAY CONN(*) from runmqsc, you will see that the entry for 
amqsphac is back!  
But upon closer observation, you notice that the value for CONN is different, because it is 
indeed a new connection! 
 



Page 24 of 28 

 

 
 
AMQ8276: Display Connection details. 
   CONN(B097365505940020) 
   EXTCONN(414D5143514D5F373520202020202020) 
   TYPE(CONN) 
   APPLTAG(amqsphac)                       CHANNEL(TEST.SVRCONN) 
   CONNAME(9.27.47.38) 
 CONNOPTS(MQCNO_HANDLE_SHARE_BLOCK,MQCNO_SHARED_BINDING,MQCNO_RECONNECT) 
 
Hum! 
 
This means that STOP CONN will not effectively terminate the connection from a client 
application that is using the option for automatic client reconnect. 
 
Now you have this question: is there a way to terminate the connection from such client 
application and prevent the application from trying to reconnect again? 
 
The answer is 'yes' and it is explained in the next chapter. 
 



Page 25 of 28 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ Chapter 6: Stopping a connection through runmqsc: STOP CHANNEL STATUS(STOPPED 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
The Scenario 2 from Chapter 5 shows that a client application that uses the automatic 
client reconnection cannot be effectively stopped by using the runmqsc command STOP 
CONN 
 
One strategy is to allocated a separate server-connection channel for those applications 
that use the automatic client reconnection and if necessary, the MQ administrator can stop 
that dedicated channel, which in turn will terminate the connection. 
 
However, it is important to specify the proper option, which is STATUS(STOPPED). 
 
The rest of this document shows 2 scenarios, one with STATUS(INACTIVE) and the other with 
STATUS(STOPPED). 
 
+ Scenario 1: Stopping a channel and specifying STATUS(INACTIVE) 
 
In this document, the connection from the high availability sample amqsphac uses the 
dedicated server-connection channel named "TEST.SVRCONN". 
 
I used the MQ Explorer to stop that channel: 
Selected the desired server-connection channel, right-click and issued: Stop ... 
Then specified for New State: "inactive" 
 
This is the equivalent of the following in runmqsc: 
   stop channel(channelName) status(INACTIVE) 
 
The running amqsphac application got the following error message: 
 
message <Message 112> 
14:12:21 : EVENT : Reason(2202) 
MQPUT ended with reason code 2202 
Sample AMQSPHAC end 
 
mqrc 2202: 
 MQRC_CONNECTION_QUIESCING 
 
And the following entry was logged in the error log of the queue manager: 
 
05/05/2015 03:05:38 PM - Process(20741.28) User(rivera) Program(amqrmppa) 
                    Host(veracruz) Installation(Installation2) 
                    VRMF(7.5.0.4) QMgr(QM_75) 
AMQ9528: User requested channel 'TEST.SVRCONN' to be stopped. 
EXPLANATION: 



Page 26 of 28 

 

The channel is stopping because of a request by the user. 
 
OK! It seems that we reached the objective that an MQ administrator can terminate a 
connection from a client application. 
 
... but ... 
 
But the user from the remote system may try again to run the client application, and it will 
succeed, re-activating automatically the channel and creating a new connection! 
 
rivera@mosquito: /home/rivera 
$ amqsphac Q1 QM_75 
Sample AMQSPHAC start 
target queue is Q1 
message <Message 1> 
message <Message 2> 
 
Thus, the use of STATUS(INACTIVE) will not prevent the remote application from trying 
again to contact the queue manager through the dedicated server-connection channel, 
which will start automatically. 
 
Question: Is there a way to stop a server-connection channel and prevent that a remote 
application restarts that channel? 
In order words, it is possible to force a server-connection channel to remain stopped and 
not to start automatically? 
 
The answer is 'yes' and it is explained in Scenario 2 below. 
 
 
+ Scenario 2: Stopping a channel and specifying STATUS(STOPPED) 
 
To ensure that the channel remains stopped and does not restart in response from a new 
contact from a remote client, then specify that the new status should be "STOPPED": 
 
I used the MQ Explorer to stop a channel: 
Selected the desired server-connection channel, right-click and issued: Stop ... 
Then specified for New State: "stopped" 
This is the equivalent of: 
   stop channel(channelName) status(STOPPED) 
 
The running amqsphac application got the following error message 2202  
MQRC_CONNECTION_QUIESCING 
 
message <Message 112> 
14:12:21 : EVENT : Reason(2202) 
MQPUT ended with reason code 2202 



Page 27 of 28 

 

Sample AMQSPHAC end 
 
But if the user of the remote system tries to restart the client application will get an error 
2537 MQRC_CHANNEL_NOT_AVAILABLE 
rivera@mosquito: /opt/mqm80/inc 
$ amqsphac Q1 QM_75 
Sample AMQSPHAC start 
MQCONNX ended with reason code 2537 
Sample AMQSPHAC end 
 
Then the following entry will be added to the queue manager: 
 
05/05/2015 03:10:03 PM - Process(20741.30) User(rivera) Program(amqrmppa) 
                    Host(veracruz) Installation(Installation2) 
                    VRMF(7.5.0.4) QMgr(QM_75) 
AMQ9534: Channel 'TEST.SVRCONN' is currently not enabled. 
EXPLANATION: 
The channel program ended because the channel is currently not enabled. 
ACTION: 
Issue the START CHANNEL command to re-enable the channel. 
 



Page 28 of 28 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
+++ Chapter 7: Stopping a connection through SupportPac MS6B 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
One way to use the chstat script from MS6B to stop a connection is to specify the -kill 
option. An example is shown below. 
 
rivera@veracruz: /downloads/mq/ms6b 
$ chstat -mQM_75 -kill -cSYSTEM.DEF.SVRCONN -ip9.27.46.236 
 
Stopping Connections on SYSTEM.DEF.SVRCONN from 9.27.46.236 | total: 2 
 
[Time: 04/20/15-15:55:26] [1] of [2] Stopping CONN(B599265502300020) | 
EXTCONN(414D5143514D5F373520202020202020) 
[Time: 04/20/15-15:55:26] [2] of [2] Stopping CONN(B5992655132E0020) | 
EXTCONN(414D5143514D5F373520202020202020) 
 
 
+++ end  
 
 


